Na základě diskuse na Facebooku, kde se kamarád pokoušel pochopit z mých krátkých příspěvků, jak souvisí výkon a kroutivý moment, jsem se raději rozhodl sepsat myšlenky do plnohodnotného (byť krátkého) článku. Zcela věřím, že totiž tento kamarád nebude jediný, kdo má v uvedených pojmech jakousi “mlhu” a potřeboval by je osvětlit.
Výkon, kroutivý moment a jejich význam
Všechny motory máme na světě proto, aby konaly nějakou práci. Práce, uváděná v Joulech, je veličina, která nám popisuje doslova “kolik je toho třeba udělat”. Kupříkladu pokud budeme táhnout 500kilový klavír do 4. patra, tedy zhruba do 20 metrů výšky, budeme potřebovat přibližně (zaokrouhlujme prosím) práci:
$$W=F s = m g s = 500 \cdot 10 \cdot 20 = 100\ \mathrm{kJ}$$
(ke stejnému výsledku bychom došli, kdybychom počítali přes potenciální energii, kde \(W = mgh\), což je vlastně totéž v našem případě 😉 )
Abychom tedy dostali takový klavír do takového 4. patra, potřebujeme někde sehnat práci \(100\ \mathrm{kJ}\). Buď ji vyvineme ručně, kladkami či použijeme nějaký motor. Jenže samozřejmě intuitivně, pokud budeme mít motor, který bude mít “větší páru”, vytáhne nám tam klavír mnohem rychleji než nějaký slaboučký motůrek. Množství toho, jakou “to má páru” se tedy říká výkon a jedná se velmi jednoduše po schopnost provést nějakou práci za průměrný čas. Pokud bychom tedy chtěli náš klavír vytáhnout za 10 vteřin, budeme potřebovat výkon:
$$ P = \frac{W}{t} = \frac{m g s}{t} = \frac{500 \cdot 10 \cdot 20}{10} = 10\ \mathrm{kW}$$
Budeme tedy potřebova motor s výkonem alespoň \(10\ \mathrm{kW}\). Samozřejmě nebudeme uvažovat, že motory nemají 100% účinnost a tak podobně, spíše jde o princip jako takový.
Nicméně — je vám asi jasné, že úplně “nefunguje” jednoduchá zkratka, že pokud vezmu třeba motorek z ostřikovačů a budu s ním zvedat takový klavír, bude mi to trvat třeba 2 hodiny a zvednu ho. Samozřejmě by to mohlo fungovat, ale je potřeba, aby — byť pomalý — motor uměl vykonávat nějakou sílu, která by byla větší, než síla působící gravitací (tedy aby klavír neklesal, ale stoupal).
Musí být tedy schopen vyvinout určitý moment, kterým by na dané těleso působil (byť pomalu). Jedná se o točivý stroj (motor se otáčí a dělá pořád dokola to samé — zabírá), veličina, která nám popisuje toto silové působení se nazývá kroutivý moment.
Pokud definujeme dráhu, kterou musí obvod točivého stroje (jeho aktivní části) vykonat, aby udělal jednu otáčku, je to klasický obvod:
$$o=\frac{2\pi o}{60}$$
Šedesáti dělíme proto, že otáčky se uvádí v “rpm”, tedy “otáčkách za minutu”. Pokud máte otáčky v otáčkách za sekundu, poté samozřejmě nedělíte 🙂 Práce, jak víme, je silové působení po nějaké dráze, tedy:
$$ W = F s$$
No a pokud víme, že dráha je rovna obvodu:
$$ W = F s = F \frac{2 \pi r}{60}$$
Což je náš vztah pro výkon. Můžeme udělat zkratku, že:
$$M = F r$$
A tedy
$$ W = \frac{2 \pi M o}{60}$$
Daný výkon motoru tedy přímo souvisí s kroutivým momentem, kterým motor na danou “překážku” působí.
Praktické otázky
Vidíme, že výkon motoru je přímo závislý na otáčkách motoru. Zkusme si proto zaexperimentovat s různými průběhy kroutivého momentu a výkonu.
Příklad 1) Plochý “kroutivý moment”:
Průběh kroutivého momentu tedy bude vypadat např. takto:
Vidíme, že motor, který by měl takto rovný průběh, by dosahoval největších výkonů při nejvyšších otáčkách, přičemž by měl stále konstantní kroutivý moment, v našem případě \(100\ \mathrm{Nm}\). Osa výkonu je ve Wattech, tedy vidíme, že kolem 10 000 otáček by měl motor výkon přes 100 kW, což odpovídá zhruba 135 koňským silám.
Žádný motor však nemá takto krásný průběh krouťáku, možná tak v Tesle se přibližují, ale jinak se jedná většinou o nějakou křivku. V technických specifikacích motoru většinou najdete, že máte “maximální krouťák” třeba 110 Nm při 4500 otáčkách. To znamená, že všude jinde je to “méně”. Zkusme si tuto situaci opět načrtnout grafem:
Příklad 2) Motor s reálným krouťákem
Zde vidíme zajímavý jev — zatímco kroutivý moment má svůj vrchol zhruba v oněch 5000 otáčkách, výkon má svůj vrchol skoro až v 7000. Tyto charakteristiky jsou právě velmi důležité — čím máte vyšší krouťák ve vyšších otáčkách, tím máte i větší výkon.
Doufám, že je to vše jasné, případně se ozvěte do komentů 😉 A budu rád za sdílení! 😉
V prvním odstavci se tazatel ptá: “Kolik více důkazů ještě potřebujeme, než bude většina populace ochotna čelit faktu, že jsme práškováni vysoce toxickými látkami, které jsou součástí programu klimatického inženýringu?”
Má odpověď: Stačil by jediný 🙂
“motory s vysokým stupněm turbofanu (standardní pro všechny komerční dopravce a všechny armádní tankerové stíhačky) jsou svým designem téměř neschopny produkce kondenzační stopy.“
Toto není pravda. Tvorba kondenzační stopy závisí na použité technologii pouze okrajově, všechny proudové motory tvoří kondenzační stopu v momentě, co vznikne kondenzační ložisko ve vzduchu, který motorem prochází. Což je v každém motoru, protože žádný proudový motor není bez emisí.
“85% vzduchu, který prochází tímto motorem, není spalováno.“
Ano, souhlasím 🙂 Dokonce více, řekl bych, že možná tak 100 % 🙂 Vzuch totiž není v motoru spalován vůbec, pouze kyslík ze vzduchu.
“Sečteno a podtrženo, komerční dopravní letadla jsou vybaveny rozprašovacími tryskami, upevněnými na pylonu, přímo v jedné přímce s přítlakovým proudem stíhačkového motoru. “
Totálně nesmyslná věta, vůbec ji nechápu 🙂
Poté se v článku vyskytuje hromada fotografií letadel a jejich motorů, které vypadají naprosto normálně, vidíme klasické odtrhové de-ice hrany, výfuky, klapky a ovládací plochy na křídlech.
Nic víc tam nevidím, jen spousta blábolů od duševně nemocných lidí. Lidí, kteří mají volební právo. Lidí, kteří mohou chodit mezi námi a třeba učit naše děti ve škole.
Tento příklad je velmi jednoduchý, nicméně stojí za uvedení:
Zadání (překopírované z Facebooku zní): V nádobě o podstavě s hranami 10 cm a 15 cm je přesně 1 litr vody v kapalném stavu. Do kapaliny je vhozena krychle vodního ledu o hraně 4 cm. Jaká bude výška hladiny ihned potom, co se hladina po vhození ledové kostky ustálí? Jaká bude výška hladiny potom, co se kostka rozpustí? Pro jednoduchost předpokládejme hustotu kapalné vody \(1 \frac{g}{cm^3}\) a ledu \(\frac{9}{10} \frac{g}{cm^3}\), a žádné závislosti objemu na teplotě.
Víme, že objem bude tedy:
$$V = a b v$$
kde \(v\) odpovídá výšce. Z toho snadno určíme:
$$v = \frac{V}{ab}$$
Nyní musíme zjistit vliv vložené kostky. Objem takové kostky je:
$$V = 4^3$$
Podle Archimédova zákona bude plavat a vytlačí množství vody v poměru hustot, tedy vytlačí:
UPDATE: Jsem si všiml, že jsem zadání špatně opsal (celý já), základna je čtvercová o hraně 10 cm — nicméně to není problém, to se snadno dosadí do vzniknuvších vztahů a vyjdou výšky \(10,576\ \mathrm{cm}\) a \(10\ \mathrm{cm}\), tedy rozdíl zrhuba necelých 6 milimetrů 😉
UPDATE 2: Zapomněl jsem ještě na část řešení — jak se změní hladina poté, co se led rozpustí. Logicky — nezmění, hmotnost ledu a hmotnost vody po rozpuštění kostky bude stejná, tedy vytlačí se stejné množství.
Dostal jsem od instruktora v autoškole velmi zajímavý příklad — pokud ho znáte, tím lépe, ale fakt jsem ho neznal a hodně se mi líbil, zkusil jsem tedy přijít na nějaké řešení 😉 😉 Nakonec mi z toho “vypadlo” něco normálního (tedy reálného), svůj postup tedy uveřejňuji zde.
Mějme následující zadání: Existuje studna neznámé hloubky a průměru, do které hodíme dva klacky; jeden třímetrový, druhý dvoumetrový. Předpokládejme, že jsou “v rovině” a jejich místo setkání je nad dnem studny ve výšce 1 metr. Otázka zní — jaký je průměr takové studny.
Situační obrázek bych navrhl asi takto:
Začal bych asi svojí první myšlenkou, a to sice že řešení se určitě bude dělat nějak přes podobnosti trojúhelníků. Začal jsem tedy zuřivě hledat různé podobnosti, některé mě zavedly do slepých cest (tedy ne, že by si některé trojúhelníky nebyly podobné, ale bylo mi to k ničemu), ale nakonec se jedna cesta zadařila, tu zde i prezentuji 🙂
Ze všeho nejdříve si napíšeme rovnice, ze kterých budeme vycházet. Jedné se o soustavu různě propletených pravoúhlých trojúhelníků. Ze všeho nejdříve si určeme, že celkový průměr \(d\) bude samozřejmě roven:
Tím jsme popsali dva hlavní (velké) trojúhelníky. Nyní popíšeme vztahy v trojúhelníku s naznačenou výškou. Vyjdeme právě z té podobnosti, tedy že:
$$\frac{d_1}{v} = \frac{d}{b}$$
tedy po dosazení \(v=1\) získáme:
$$d_1 = \frac{d}{b}$$
a obdobně
$$d_2 = \frac{d}{a}$$
Vyjádříme si jednu a druhou stranu:
$$d_1=\frac{d}{b}, d_2=\frac{d}{a}$$
a dosadíme do výše uvedené rovnice součtu částí průměru:
$$d=\frac{d}{b}+\frac{d}{a}$$
Z toho vyjádříme jednu či druhou proměnnou, začněme třeba \(a\):
$$\frac{d}{a}=d-\frac{d}{b}=\frac{db-d}{b}$$
z toho tedy:
$$a = \frac{b}{b-1}$$
případně
$$b = \frac{a}{a-1}$$
Toto dosaďme do úplně prvních dvou rovnic pro velké trojúhelníky:
$$d^2+\frac{b^2}{\left(b-1\right)^2}=3^2$$
$$d^2+b^2=2^2$$
Vyjádříme si z druhé rovnice \(d^2\) a dosadíme do první:
$$2^2-b^2+\frac{b^2}{\left(b-1\right)^2}=3^2$$
Převedeme na rozumný tvar a vyřešíme jako rovnici 4. řádu, třeba pomocí Wolframu, to už je jedno (ale můžete zkusit ručně) a vyjdou 4 řešení, z toho 2 komplexní, která rovnou zavrhneme.
$$b_1=0,7009 ; b_2=1,5761$$
Které vybrat? To zatím nevíme, každopádně pokud dosadíme do rovnice pro průměr a odmocníme, vyjdou nám (prozatím) dvě řešení:
$$d_{I}=\sqrt{2^2-b_1^2} = 1,23$$
$$d_{II}=\sqrt{2^2-b_2^2} = 1,87316$$
Musíme vyjádřit tedy stejné rovnice, akorát pro vyjádřené \(b\), tedy:
$$b=\frac{a}{a-1}$$
Stejným postupem jako výše dostaneme rovnici:
$$3^2-a^2+\frac{a^2}{\left(a-1\right)^2}=2^2$$
a ta po vyřešení dá dva reálné kořeny:
$$ a_1=-2,34$$
$$a_2 = 2,7357$$
První rovnou vyhodíme, délky prostě záporné nechceme, držme se toho 🙂 Dosadíme tedy \(a_2\) a vyjde:
$$d=\sqrt{3^2-a_2^2}=1,2312$$
To se tedy shoduje s řešením “z druhé strany” problému — proto tento výsledek prohlásíme za finální. Průměr studny je tedy \(1,23\) metrů.
Tento článek nedávám ani do doplňkových článků, protože s fyzikou má společného fakt jen minimálně. Rovnou ho tedy dávám do “zábavy”. Nicméně pokud vám tato čísla nic neříkají, nejspíše patříte k té šťastné množině lidí, které průnik s množinou lidí, kteří věří či propagují tento nesmysl, je množina prázdná[1]Prostě jste o tom neslyšeli 🙂 .
O co se tedy jedná? Zastánci této podivné hypotézy říkají, že hudba je při podladění o 8 Hz příznivější tělu a mysli, než pokud se hraje v klasickém ladění. Možná by to však chtělo trošku alespoň fyzikálně zmínit, jak je to vlastně s laděním (když už se tedy máme bavit o fyzice).
Tóny
Asi to každý znáte — tón, zvuk, hluk; tyto termíny se definují snad už na ZŠ, čili nebudu je dlouho rozebírat, jen stručně: tón je na rozdíl od hluku homogenní a periodický, zvuk je množina všeho, do čeho patří i tón, hluk atp.
Jak víte, zvuk je mechanické vlnění nějakého prostředí, v našem případě vzduchu, které tímto přenáší nějakou zvukovou informaci. Tu pak mozek přes periferie (ucho) zpracovává na hudební či zvukový vjem.
Během historie se chápání “hudby” jako soustavy tónů poměrně dost bouřlivě vyvíjelo, nicméně to, že dnes používáme klasické tóniny, na které jsme zvyklí, není jen tak náhodou. Historii přenechám historikům, popíšeme si všechno pěkně fyzikálně.
Jak jsme již řekli, tón je generován nějakým vlněním, v našem případě se omezíme na harmonické vlnění:
$$ f(t) = y = \sin \left(\omega t + \phi \right) $$
Kde \(y\) je aktuální výchylka, \(\omega\) je úhlová frekvence, \(t\) je čas, který do rovnice vstupuje jako parametr a \(\phi\) je fázový posuv. Nicméně pokud bychom si vytvořili např. takovýto tón, který má frekvenci 440 Hz, zněl by poněkud fádně, nezajímavě, nudně:
Krom toho, že tón není ani tak hlasitý a přesto je dost nepříjemný. Aby tón zněl lépe, je zapotřebí smíchat více tónů, nicméně ne jen tak ledabyle a náhodně, je potřeba je smíchat podle nějakých pravidel. Nejjednodušším mícháním je stav, kdy míchám různé “harmonické” frekvence. Co to je harmonická? Zde uvedený tón si můžeme zakreslit např. takto:
Jak vidíte, křivka se neustále opakuje — což je přesně to, co slovo “harmonická” znamená, je totiž periodická (tzn. neustále se opakující). Abychom mohli přidat třeba “druhou harmonickou”, musíme přidat takovou “harmonickou”, která bude mít stejné místo opakování — tedy aby tam, kde se křivka v nule[2]či tam, kam nás fáze posune potkává s osou \(t\), aby se i tam potkávala křivka další harmonické frekvence. Pokud přidáme např. frekvenci 880 Hz, tedy:
Výsledná frekvence bude prostým součtem těchto dvou křivek, tedy:
Sice už to není “sinusovka”, ale vidíme, že je to funkce neustále periodická. Zní nějak takto:
Kontrolní otázka (o další Fidorku!), pokud si tuten souzvuk pustíte, jak vysvětlíte ono “vlnění” zvuku? Proč zvuk nezní stále stejně, ale jako by pulzoval?
Nicméně tímto způsobem můžete přidat hromadu křivek, přidám ještě 220 a 110 Hz:
Vidíme, že křivka začíná být opravdu složitá, ale pořád je periodická, pořád se opakuje. Zní takto:
Nicméně když tento tón slyšíme, pořád je to prostě “takové jalové”. Jak se dosáhne toho, že tóny zní tak nějak lépe?
Zatím jsme totiž míchali pouze násobky harmonické — dvojnásobnou frekvenci, poloviční, čtvrtinovou. Tomuto intervalu mezi tóny se říká oktáva a vyjadřuje přesně to, co jsme si ukázali — dvojnásobek (či půlnásobek) původní frekvence. Pokud tón o frekvenci 440 Hz označíme jako \(a_1\), potom ten o frekvenci 880 Hz bude \(a_2\), frekvence 220 Hz odpovídá \(a\) a 110 potom \(A\) (čteme jako “á malé” a “á velké”).
To je však pořád jen tón A, ale kdo někdy viděl kytaru nebo klavír dobře ví, že je tam poněkud více tónů. Takže jak vzniknou? Začněme s další pěknou matematickou závislostí — čistou kvintou. Že je to kvinta, na to lidé přišli až později, nicméně kvinta má trojkové násobky. Smíchejme proto Náš tón 440 Hz s frekvencí 660 Hz, tedy \(\frac{3}{2}\) z 440 Hz:
Pro další intervaly platí další zákonitosti, nicméně takovýmto různým dělením dostaneme hromadu tónů, které když uspořádáme do našich známých stupnic, dostaneme tzv. Pythagorejské ladění, které tedy vznikne tím, že postupně přidáváme různé kvinty a posouváme je různě o oktávy nahoru a dolů. Nicméně dnešní nástroje nejsou laděny v Pythagorejském ladění, ale tzv. temperovaném, případně koncertním ladění.
Rozdíl mezi těmito laděními je mírně nad rámec fyzikálního článku, každopádně ve stručnosti — lidé si všimli, že pokud mírně posunou některé tóny, klavír bude třeba neustále “trochu rozladěn”, ale zase budou všechny tóny (současně hluboké a vysoké) k sobě ladit lépe. A právě takovému ladění se říká temeprované.
V článku o Fourierově analýze se můžete případně dočíst, jak je to se skládáním prakticky nekonečně mnoha různých frekvencí.
Zpět však k zastáncům “432 hypotézy”. Ti tvrdí, že pokud jako výchozí tón (tzn. vše ostatní je stejné) nepoužiji tón o frekvenci 440 Hz, ale 432 Hz, bude hudba příjemnější (s tím se dá i nedá souhlasit, záleží na skladbě), ale především že bude mít “pozitivní účinky na zdraví jedince”[3]Spíše tedy že “nebude mít negativní” účinky….
S argumenty této čtyři sta třicet dvojkové skupiny se dá poměrně slušně nesouhlasit; už jsem četl různé — od toho, že Mozart či Beethoven používali jiné ladění[4]Aby ne, když to bylo před staletími a moderní ladění se normalizovalo až kolem roku 1940., případně postují různé “pestrobarevné” obrázky s jakožemeditativní tématikou a vzájemně se poplácávají po zádech, jak to všem “čtyři sta čtyřicátníkům” nandali.
Názor si udělejte sami, případně zagooglete, že je to hloupost zjistíte po několika pročtených příspěvcích a studiích, nicméně nyní jen pro srovnání — stejný kousek písničky ve 440Hz ladění (tzn. beze změny) a ten samý kousíček se sníženým laděním (bohužel kvůli autorskému zákonu nemůžu více než 30vteřinovou ukázku):
Původní 440Hz verze:
“Vylepšená” 432Hz verze:
Jak slyšíme, “nějaký” rozdíl tam je. Nicméně vliv těchto změn je podle mého dost sporný. Často též vidíme různé obrázky, které tato skupina lidí posílá:
Je to sice krásné, ale netuším, proč by měla změna frekvence či toho, kde se různé harmonické potkávají, nějak ovlivňovat zdraví. Každopádně k výše uvedenému obrázku ještě pár slov:
Musíme totiž “probrat” ještě jeden typ vlnění, tzv. stojaté vlnění. To je narozdíl od postupného vlnění uvedeno “na místě”. Např. pokud klepnete do struny, ta se rozezní a bude “se vlnit” — stojaté vlnění. Vlna nikam necestuje, vlnové délky odpovídají různým poměrům délky struny. Postupné vlnění je takové, které pozorovatel vnímá jako vlnění až s tím, jak se věc, která se vlní, pohybuje — např. takový zvuk ve vzduchu. Vlny postupně jako kola po hození kamínku do vody cestují směrem od zdroje zvuku a pokud “narazí” na posluchače, ten je uslyší.
Nicméně stojaté vlnění má pár docela zajímavých vlastností — hráči na kytaru třeba ví, že pokud drknou na strunu tzv. flažolet tak, že ji rozezní jen “na půlce”, poté se druhá polovina struny rozezní též, akorát v opačné fázi 😉 Výsledná frekvence tónu bude tedy dvojnásobná, bude tedy o oktávu výše. Ale pokud si zkusíte takto rozeznít strunu třeba jen “o centimetr” vedle, už se tón neozve a vlnění okamžitě ustane.
Pokud bychom nakreslili obrázek toho, jak moc dobře struna zní, pokud v nějakém místě stiskneme strunu, dostaneme diagram, který je velmi podobný právě výše uvedným obrázkům (akorát ty berou osy jak X tak Y, v mém uvedeném případě se strunou by se aplikovala pouze osa X). Obrázky totiž zohledňují vliv prostředí, které celé kmitá — např. pokud jste v malé místnosti bez koberců, určitě slyšíte, že se zvuk tak podivně “nese” a rezonuje. A to přesně souvisí právě se stojatým vlněním — v některých frekvencích se vlny prostě nevyruší a budou znít déle a intenzivněji než v jiných.
Nicméně tato frekvence je naprosto závislá na rozměrech a tvaru místnosti. A stejně tak i výše uvedené obrázky, které mají simulovat vlnění na hladině vody — záleží kromě vstupní frekvence i na rozměrech misky či předmětu, který se vlní a kde toto vlnění zkoumáme.
Kdyby měli lidé své hlavy všechny stejně velké (tedy všichni lidé kdyby měli stejně velkou hlavu), samozřejmě by něco takového mohlo být zajímavé zkoumat. Bohudík tomu tak však není a každý si tak můžeme užívat jiného “vlnění”, které je nám příjemné.
Ohledně vlivu zvuku a frekvencí na tělo v biologickém slova smyslu opět požádám kolegu Lukáše, který se k tématu doufám též někdy vyjádří! 🙂
Nemohli jste si zajisté nepovšimnout, že mezi různými podobory přírodních věd panuje taková přirozená a neškodná nevraživost. Dnes bych se chtěl podívat na jeden skoro už fenomén — vztah matematiky a fyziky. Alespoň tedy vnést svoji kapku pohledu do tohoto sporu.
Že nevíte, kde je spor? Normálně bych ho též neviděl, ale existují mezi námi jedinci, kteří to prostě vidí jinak a za každou cenu obhajují své teze, i když už se zdají býti vyvrácené. V žádném případě to neznamená, že by dotyční byli nějací hlupáci či popletenci — to vůbec ne. Já nemám nejmenšího důvodu si něčeho takového o nich myslet, dokonce se s těmito lidmi znám a vím, že jsou to “bedny”, kteří by byli schopni mě a hromadu dalších lidí, kteří se zajímají o fyziku, strčit hravě do kapsy.
Jsou však témata, na kterých se s nimi prostě neshodnu — a přijde mi, že je toto téma, které zde chci uvést, tak často omíláno, až si prostě svůj vlastní miničlánek zaslouží.
Princip samotného sporu
Nejde o nic závažného: Lidé, se kterými nesouhlasím, tvrdí následující:
matematika má oporu v realitě
=> matematika se musí řídit zákony “reality” (či toho, co za realitu považujeme)
To je vlastně celé. Že to vypadá triviálně? No, ono až tak není. Začněme nyní rozborem základní myšlenky “opozičního tábora”[1]od teď již OT.
Tito tvrdí, že matematika vznikla jako “odnož fyziky”[2]https://www.facebook.com/jan.fikacek/posts/789843034384241?comment_id=790072417694636&offset=0&total_comments=22, tedy musí se těmito zákony řídit. Já si myslím trošku něco jiného — nicméně k mému názoru až později. Jak to s matematikou a fyzikou ve starověku bylo, to přenechám historikům a odborníkům, kteří vědí zdaleka více než-li já. Ať už to bylo jakkoliv, historie tohoto nemá totiž na současné pojetí matematiky prakticky žádný vliv.
Současná matematika je — abych to zjednodušil — abstraktní vědou, takovou, která je schopna čistého důkazu[3]Jiná věda nic takového neumí — i třeba má oblíbená fyzika. Pokud chcete něco dokázat ve fyzice, buď použijete matematiku, anebo provedete experiment, který potvrdí to, co tvrdíte. V ostatních vědních oborech je to podobné.. Dalo by se tedy říci, že má mnohem blíže např. k filosofii než k fyzice. Často tvrdím, že matematika je jazykem abstraktních struktur, což neznamená nic jiného, že dává ostatním vědám a oborům návod a struktury, pomocí kterých už tyto vědy mohou řešit své problémy.
Nepůjdu zrovna daleko pro příklad — a uvedu ten nejjednodušší, který mě právě napadl: Komunitativnost členů při sčítání. Toto neříká nic jiného než že:
$$ x + y + z = x + z + y = y + x + z = y + z + x = z + x + y = z + y + x $$
Tedy slovně asi tolik, že pokud sčítám, naprosto nezávisí na pořadí členů v součtu. Tedy že \(5+10\) je totéž, co \(10+5\). Matematika jde však ještě dál — má definováno, co je to sčítání, co je to “pětka”, co je to “desítka”, k ničemu z toho nepotřebuje nic fyzického, definuje takové věci pouze na základě čistých matematických[4]a tedy abstraktních pravidel, která jsou zase dále definována. Není potřeba ani fenomenologického přístupu[5]Tedy takového, který zkoumá narozdíl od přičinné kauzálnosti právě fenomenologickou, tedy takovou, která řeší jakým způsobem “se jeví” dané věci člověku, než spíše jaké “doopravdy jsou.” Samozřejmě oba pojmy jsou naprosto abstraktní a pokud se tomu chcete věnovat, doporučuji další studium, zde již ne více o tom 🙂 , matematika totiž vytváří vlastní sadu pravidel — a ta nevznikla z ničeho jiného než z dalších sad pravidel.
Matematika jako jazyk struktur
Co tímto myslím — pokračujme dále v tom, co jsem již představil, tedy komutativnost při sčítání. Matematikovi je naprosto jedno, co se pod číslicemi či proměnnými skrývá. Pouze poskytl pravidlo k tomu, aby “se to tak mohlo dělat”.
Fyzik například potřebuje spočítat nějakou rovnici, uvedu třeba následující známou rovnici (kdo pozná, co vyjadřuje, má u mě Fidorku, počet Fidorek je omezený kapacitou zásob, tj. maximálně 1 kus) 😀 :
$$ i \hbar \frac{\partial \Psi(r,t)}{\partial t} = -\frac{\hbar}{2m} \nabla^2 \Psi(r, t) + V( r )\Psi(r,t)$$
A zákon o komutativnosti tvrdí, že tuto rovnici můžu zapsat stejně tak jako:
$$ i \hbar \frac{\partial \Psi(r,t)}{\partial t} = V( r )\Psi(r,t) – \frac{\hbar}{2m} \nabla^2 \Psi(r, t) $$
Aniž bych třeba tušil, co výše zmíněné znamená, mohu to takto zapsat. Matematika tedy pouze poskytla návod na to, jak něco takového řešit, jak k tomu přistupovat — je to tedy čistě abstraktní strukturální jazyk.
S tím však OT nemají problém, jejich problém nastává v momentě, co se začneme pohybovat v “čistě matematických” vodách[6]Ono je toto stejně absurdní pojem, i komutitavita součtu je čistě abstraktní a matematický pojem, který nemá žádnou oporu v ostatních vědách, pouze ji využívají., například pokud začneme řešit nuly a nekonečna.
Nebudu se rozepisovato tom, že existuje spousta “typů” nekonečna (navíc nejsem matematik a nejsem si jist, že bych to byl schopen správně popsat), nicméně to důležité, co si odnést — nekonečno není číslo! Ať už máme jakoukoliv úroveň nekonečna, pořád to není číslo.
A stejně tak i nekonečně malé číslo není vlastně číslo, i když se velmi nekonečně jemně blíží k nule. Ano, jde mi o zápisy diferenciálů. Např.:
$$ \frac{\partial s}{\partial t} = v$$
Případně obyčejné:
$$ \int_{x_0}^{x_1} F \mathrm{d}s = W$$
Velmi jednoznačné fyzikální vyjádření, které pouze využilo matematiku. To, že je za tím schovaný výpočet aktuální rychlosti či práce po obecné dráze, to už matematika nezajímá 😉 Matematik v tom vidí pouze abstraktní pojmy, proměnné, chcete-li.
Zde se však s OT neshoduji. OT tvrdí, že cokoliv v matematice má nějaký reálný (či tzv. reálný) podklad — tedy nic jako \(\mathrm{d}s\) nemůže existovat, protože neexistuje (hypoteticky, i když pravdu neznáme) nic menšího než Planckova vzdálenost (což je pojem, který vytáhneme z rovnice s planckovou konstantou a zjistíme, že nemůžeme mít menší vzdálenost než právě tuto vzdálenost). Jak říkám — jestli je to pravda nevíme, nicméně i kdyby to pravda byla, vůbec to nemění nic na tom, jak k tomu matematika přistupuje.
A jak k tomu matematika přistupuje? VŮBEC NIJAK, protože matematika neřeší fyzikální problémy! Matematice je jedno, že něco vynásobím nulou či budu se přibližovat “nekonečně dlouho”. Matematika tyto věci prostě a jednoduše neřeší.
Stejně tak matematika neřeší biologické problémy, mohl bych říci, že v DNA se párují nějaké páry tak či onak, proto nemůže existovat posloupnost taková či onaká (toto vám spíše vysvětlí kolega biolog Lukáš). A opět — matematiku to nezajímá 😉
Matematika totiž stojí “mimo” tyto věci (chtěl bych napsat “nad”, ale nemyslím tím, že je ostatním vědám nadřazená, stejně jako pokud řeknu “operace nad součtem”, nemyslím tím, že je tato operace nařazena součtu) a řeší pouze to, jakým způsobem spolu mohou abstraktní entity spolupracovat. Co se však v nich nachází, to už není ke zjištění úlohou matematika, ale ostatních — fyziků, biologů, …
Jiná věda nic takového neumí — i třeba má oblíbená fyzika. Pokud chcete něco dokázat ve fyzice, buď použijete matematiku, anebo provedete experiment, který potvrdí to, co tvrdíte. V ostatních vědních oborech je to podobné.
Tedy takového, který zkoumá narozdíl od přičinné kauzálnosti právě fenomenologickou, tedy takovou, která řeší jakým způsobem “se jeví” dané věci člověku, než spíše jaké “doopravdy jsou.” Samozřejmě oba pojmy jsou naprosto abstraktní a pokud se tomu chcete věnovat, doporučuji další studium, zde již ne více o tom 🙂
Ono je toto stejně absurdní pojem, i komutitavita součtu je čistě abstraktní a matematický pojem, který nemá žádnou oporu v ostatních vědách, pouze ji využívají.
Kamarád (Pavel Kachlíř) se mě zeptal, jestli je možné, že zobrazení laseru na kruhové podložce může být rychlejší, než \(c\), pokud budu laserem dostatečně rychle hýbat. Použil k tomu následujícího situačního obrázku:
Rychlá odpověď — ano, průmět laseru se může pohybovat rychlostí \(> c\). Nicméně nyní proč:
Uvažujme samzořejmě (pro zjednodušení), že rychlost šíření laseru je právě \(c\), tedy rychlost světla. Samozřejmě si dokážeme představit, že z dotyčného situačního obrázku se intuitivně dokážeme dostat do stavu, kdy aniž by se laser pohyboval rychlostí větší než \(c\), jeho obrázek se takovou rychlostí pohybovat může.
Celý problém tkví v tom, co nám říká relativita[1]STR — speciální teorie relativity — stručně řečeno, že žádná informace, částice či předmět obecně se nemůže pohybovat rychlostí, která by dosáhla rychlosti \(c\), tedy že jakákoliv rychlost pohybu v prostoru musí být \(v < c\). Rychlost \(c\) je tedy nedosažitelná.
Překresleme si trošku sitauční plánek, využijme úhlové rychlosti a rychlosti pohybu:
Začněme tedy jednoduše — mějme takovouto situaci, kdy ve středu kruhu máme laser, který se otáčí nějakou rychlostí \(\omega\):
Další důležitou informací pro nás bude poloměr kruhu, v našem případě tedy \(r\):
A nyní se ptáme: Jak závisí doba přenosu laseru ze středu soustavy na okraj? Odpověď přece známe — víme, že:
$$s = v t$$
čili
$$t_{\phi} = \frac{s}{v} = \frac{r}{c}$$
Protože se jedná o kruh, tato doba bude stále konstantní, ať už bude laser natočený kamkoliv.
Nyní si napišme rovnici:
$$\phi = A \sin \left(\omega t + \phi_0\right)$$
Kde \(\omega t\) je úhlová rychlost pohybu, \(A\) je amplituda, tedy \(r\) a \(\phi_0\) je nějaký fázový posuv, který v našem případě bude záviset na \(t_{\phi}\), které jsme si vyjádřili výše.
Jak ale závisí? Víme, že doba, kterou signál (paprsek) potřebuje na uražení vzdálenosti laser–obvod bude \(t_\phi\), čili než tam signál doletí, laser se otočí o \(\omega t_\phi\). Čímž máme jasně daný fázový posuv a můžeme psát:
$$ \phi = r \sin \left(\omega t + \omega \frac{r}{c}\right)$$
Musíme však uvažovat, že signál se bude zpožďovat a ne předbíhat, musíme tedy psát:
$$ \phi = r \sin \left(\omega t – \omega \frac{r}{c}\right) $$
Pokud si za \(\omega\) nyní dosadíme takovou frekvenci, kdy by se změna \(\frac{\phi}{t}\) měla odehrávat rychleji, než \(c\), nic se nestane 😉 Bude docházet samozřejmě k fázovému zpoždění, ale samotné zobrazení (projekce) světla laseru se může zdánlivě pohybovat \(v>c\).