Dopplerův jev

V tom­to krát­kém člán­ku od­vo­dí­me rov­ni­ci do­p­ple­ro­va je­vu, resp. te­dy bu­de­me zkou­mat změ­nu vl­no­vé dél­ky (a frek­ven­ce) zvu­ko­vé­ho či obec­né­ho sig­ná­lu v zá­vis­los­ti na po­hy­bu po­slu­cha­če a zdro­je sig­ná­lu.

Ur­či­tě jste s pro­je­vy Do­p­ple­ro­va jevu[1]dále jen DJ em­pi­ric­ky se­zná­me­ni; je­dou­cí vo­zi­dlo, vlak, sa­nit­ka, po­li­cis­té — po­kud se při­bli­žu­jí, je­jich zvu­ko­vý pro­jev „zní vý­še“, než po­kud je­dou smě­rem „od vás“. Pojď­me se ny­ní lehce po­dí­vat na zá­vis­los­ti těch­to je­vů, z če­ho ply­nou a ja­ké jsou vlast­no­si DJ.

Základní vzorečky, ze kterých vyjdeme:

Pev­ně vě­řím, že ná­sle­du­jí­cí vzta­hy jsou pou­hým opa­ko­vá­ním, nicmé­ně pro jis­to­tu je uve­du:

  • Zá­vis­lost dráhy \(s\), rych­los­ti \(v\) a ča­su \(t\):
    $$\begin{array}{}s & = & v\cdot t\\ v & = & \frac{s}{t}\\ t & = & \frac{s}{v}\end{array}$$
  • Zá­vis­lost frek­ven­ce \(f\), rych­los­ti \(v\) a vl­no­vé dél­ky \(\lambda\):
    $$\begin{array}{}\lambda & = & v\cdot \frac{1}{f} \\ f & = & v \cdot \frac{1}{\lambda}\end{array}$$
  • Zá­vis­lost frek­ven­ce \(f\) a do­by kmi­tu \(T\):
    $$f = \frac{1}{T}$$

Odvození pro lineární pohyb

Abychom od­vo­ze­ní správ­ně po­cho­pi­li, mu­sí­me jít „od nej­jed­no­duš­ší­ho“ pří­pa­du a po­stup­ně při­dá­vat dal­ší je­vy. Tak­to je po­stup­ně bu­de­me na­ba­lo­vat, až to­mu bu­de­me vlast­ně ro­zu­mět ce­lé­mu 🙂 Tak­že hu­rá do to­ho!

Stacionární posluchač, pohyblivý zdroj zvuku

Za­čně­me tím nej­jed­no­duš­ším. Eli­mi­nu­je­me všech­ny mož­né pří­pa­dy do je­di­né­ho — kdy se po ose \(x\) po­hy­bu­je ně­ja­ký zdroj sig­ná­lu rych­los­tí \(v_s\), my ja­ko po­slu­cha­či sto­jí­me na kon­stant­ním mís­tě \(x_p\). Bu­de­me zkou­mat vlast­nos­ti zvu­ko­vé­ho pro­je­vu, když se náš před­mět bu­de při­bli­žo­vat a po­slé­ze od­da­lo­vat.

Ja­kou rych­los­tí se ší­ří zvuk? Na­zvě­me tu­to rych­lost \(c\) — stej­ně, ja­ko rych­lost ší­ře­ní svět­la ve va­kuu. Ny­ní však ta­to kon­stan­ta zna­me­ná rych­lost ší­ře­ní zvu­ku ve vzdu­chu (či tam, kde jsme ja­ko po­slu­cha­či). Dá­le ví­me, že zvu­ko­vý zdroj vy­dá­vá zvuk o kon­stant­ní vl­no­vé dél­ce \(\lambda\). Co to vlast­ně \(\lambda\) je? Vl­no­vá dél­ka ne­ní oprav­du nic ji­né­ho než „div­ná dél­ka“ — dél­ka, kte­rá vy­ja­dřu­je vzdá­le­nost me­zi dvě­ma na se­be zob­ra­zi­tel­ný­mi bo­dy z da­né křiv­ky, kte­rá vlast­nost vl­no­vé dél­ky má. Např. u kla­sic­ké „si­nu­sov­ky“ mů­že­me po­čí­tat vl­no­vou dél­ku ja­ko vzdá­le­nost me­zi dvě­ma „ko­peč­ky“ (am­pli­tuda­mi).

Pro před­sta­vu — má­me např. zvuk o frek­ven­ci \(1000\ \mathrm{Hz}\) a rych­lost ší­ře­ní zvu­ku ve vzdu­chu je zhru­ba \(340\ m\cdot s^{-1}\). Z to­ho snad­no vy­po­čí­tá­me vl­no­vou dél­ku:

$$\lambda = c \cdot \frac{1}{f} = 340 \cdot \frac{1}{1000} = 34\ \mathrm{cm}$$

Ny­ní si však uvě­do­m­me, co se sta­ne bě­hem „jed­né“ ta­ko­vé vl­no­vé dél­ky. Při po­hyb­li­vém zdro­ji zvu­ku se me­zi­tím zdroj po­su­ne o ur­či­tou vzdá­le­nost, na­zvě­me ji ny­ní tře­ba \(x_d\). Jak vel­ká bu­de ta­to vzdá­le­nost?

Ví­me, že jed­na vl­na tr­vá \(T = \frac{1}{f}\) a dá­le ví­me, že \(s = v \cdot t\), v na­šem pří­pa­dě te­dy \(s = v_s \cdot T\). Stej­ně tak mů­že­me psát „pro frek­ven­ce“, že po­kud \(f = \frac{c}{\lambda_s}\), tak že \(T=\frac{1}{T_s} = \frac{\lambda_s}{c}\).

Po­kud te­dy \(x_d = v_s \cdot T_s\), po­tom \(x_d = v_s \frac{\lambda_s}{c}\). In­dex „s“ zna­čí, že po­čí­tá­me s pro­měn­ný­mi, kte­ré po­pi­su­jí „zdroj sig­ná­lu“. Jen pro pře­hled­nost, aby byl po­řá­dek v pro­měn­ných.

Po­kud se te­dy zdroj sig­ná­lu při­bli­žu­je, vl­no­vá dél­ka se bu­de zkra­co­vat, kon­krét­ně:

$$\lambda_{p} = \lambda_s – x_d = \lambda_s – v_s\frac{\lambda_s}{c}$$

Mů­že­me te­dy vy­já­d­řit \(\lambda_p\):

$$ \lambda_p = \lambda_s \left( 1 – \frac{v_s}{c} \right) $$

Pří­pad­ně pro frek­ven­ce:

$$ f_p = \frac{c}{\lambda_p} = \frac{c}{\lambda_s \left( 1 – \frac{v_s}{c}\right)}$$

Ny­ní te­dy prak­tic­ký pří­klad: Před­stav­me si, že má­me vý­še zmí­ně­nou frek­ven­ci \(1000\ \mathrm{Hz}\) a zdroj se bu­de při­bli­žo­vat rych­los­tí \(10\ \mathrm{ms^{-1}}\), po­tom:

$$ \lambda_p = \lambda_s \left( 1 – \frac{v_s}{c} \right) = 0.34 \left( 1 – \frac{10}{340} \right) = 0.33\ \mathrm{m} = 33\ \mathrm{cm}$$

Vyjádříme-li to te­dy frek­venč­ně, frek­ven­ce při­bli­žu­jí­cí­ho se zvu­ku bu­de:

$$ f = \frac{c}{\lambda} = \frac{340}{0.33} = 1030\ \mathrm{Hz}$$

Jak ta­ko­vé dva zvu­ky zní za se­bou si mů­že­te po­slech­nout zde:

Pří­pad­ně si mů­že­te stáh­nout zvuk zde: 1000Hzvs1030Hz

Kon­t­rol­ní vý­po­čet do­sta­ne­me tak, že po­kud do­sa­dí­me za \(v_s=c\), vi­dí­me, že zá­vor­ka se pak vy­nu­lu­je a vy­jde „nu­lo­vá vl­no­vá dél­ka“ (te­dy ne­ko­neč­ná frek­ven­ce). Sa­mo­zřej­mě v re­á­lu se nic ta­ko­vé­ho ne­sta­ne, ale vi­dí­me, že vzo­rec v ta­ko­vém pří­pa­dě ne­dá­vá smy­sl — a to je správ­ný stav.

Všech­ny ostat­ní pří­pa­dy, te­dy kdy se po­slu­chač po­hy­bu­je či kdy se po­hy­bu­jí sou­čas­ně po­slu­chač i zdroj, se da­jí pře­vést na ten­to mo­del. Ostat­ní zá­vis­los­ti si tak mů­že­te zku­sit od­vo­dit sa­mi.

V příš­tím člán­ku se po­dí­vá­me na od­vo­ze­ní těch­to frek­ven­cí pro obec­ný po­hyb, tzn. ta­ko­vý, kdy se zdroj sig­ná­lu ne­při­bli­žu­je pří­mo k vám, ale bu­de vás mí­jet. Vy­tvo­ří­me te­dy funk­ci frek­ven­ce či vl­no­vé dél­ky v zá­vis­los­ti na vzá­jem­né po­lo­ze. Ale to až za­se příš­tě, tak hez­ký den! 🙂

Poznámky pod čarou   [ + ]

1. dále jen DJ

1 komentář u „Dopplerův jev

Komentáře nejsou povoleny.